Rev.00C3.30_20240110

100G Single Lambda ER1-40-BiDi Transceiver Hot Pluggable, Bidi LC, Tx1304nm EML / Rx1309nm, SMF 40KM, DDM

Part Number: FQ2S-K8-L04-40D

Applications

- 100GBASE Ethernet
- Data Centers Switch Interconnect
- Server and Storage Area Network Interconnect

Overview

FQ2S-K8-L04-40D is a QSFP28 Single Lambda BIDI transceiver for 100GbE applications especially in Datacom, Data Center & Storage networks applications. It works based on the 100G Lambda MSA 100G-ER1-40 Standard with the typical center wavelength 1304nm. The transceiver incorporates one channel optical signal of 100Gbps(PAM4) from four channels electrical signal of 25Gbps(NRZ) and vice versa up to SMF 40km optical links.

Features

- Compliant with SFF-8665 QSFP28 MSA
- Compliant with IEEE 802.3bm CAUI-4 Interface
- Compatible with 100GBASE-ER1-40
- Signal Conversion between 53.125GBd PAM4 optical signal and 25.78125Gbps NRZ electrical signal with DSP Gear Box.
- Built in Tx CDR and Rx CDR
- Inbuild KP4 FEC
- Hot Pluggable QSFP28 footprint
- LWDM 1304nm EML transmitter
- APD receiver
- Simplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8636
- Single 3.3V power supply
- Operating Temperature 0~70°C
- Link distance 40km over SM fiber with FEC
- Maximum Power consumption 4.5W
- RoHS compliant

Rev.00C3.30_20240110

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Storage Relative Humidity	RH	5	95	%
Supply Voltage	Vcc3	-0.5	+3.6	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temperature	Тор	0	-	+70	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Supply Current	Icc			1360	mA
Electrical Data Rate, per Lane (NRZ)	DR _{ELE}		25.78125		Gb/s
Optical Data Rate (PAM4)	DROPT		53.125		GBd
Data Rate Accuracy	ΔDR	-100		+100	ppm
Pre-FEC Bit Error Rate	BER _{PRE}			2.4x10 ⁻⁴	
Post-FEC Bit Error Rate	BERPOST			1x10 ⁻¹²	
Power Consumption	Р			4.5	W
Transceiver Power-on Initialization Time				2000	ms
Control Input Voltage High	Vih	2.0		Vcc+0.3	V
Control Input Voltage Low	VIL	-0.3		8.0	V
Fiber Link Distance (G.652 SMF)	D			40	km

Rev.00C3.30_20240110

Transmitter Electro-optical Characteristics

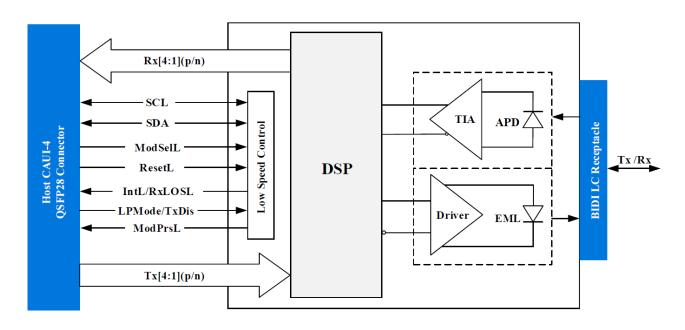
 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters		Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate		DR		103.125	106.25	Gb/s	
Optical Center Wavele	ngth	λc	1304.06	1304.58	1305.1	nm	
Average Launch Powe	r	Pavg	+1.5		+7.1	dBm	
Optical Modulation	TDECQ < 1.4dB		+4.5		+7.9	dBm	
Amplitude (OMA)	TDECQ > 1.4dB.	Рома	3.1+ TDECQ		+7.9	dBm	
Transmitter and Disper	sion Eye Closure	TDECQ			3.9	dB	
Spectral Width (-20dB)	Spectral Width (-20dB)				1	nm	
Side Mode Suppressio	Side Mode Suppression Ratio		30			dB	
Optical Extinction Ratio		ER	5			dB	
Relative Intensity Noise		RIN			-136	dB/H z	
Average Launch Powe	Average Launch Power OFF				-30	dBm	
Optical Return Loss Tolerance		ORLT			15.6	dB	
Transmitter Reflectance		R _{TX}			-26	dB	
Input Differential Impedance		Zın	90	100	110	Ω	
Differential Data Input Voltage		VIN-PP	900			mVpp	
Common Mode Voltage	TP1	-350		2850	mV		

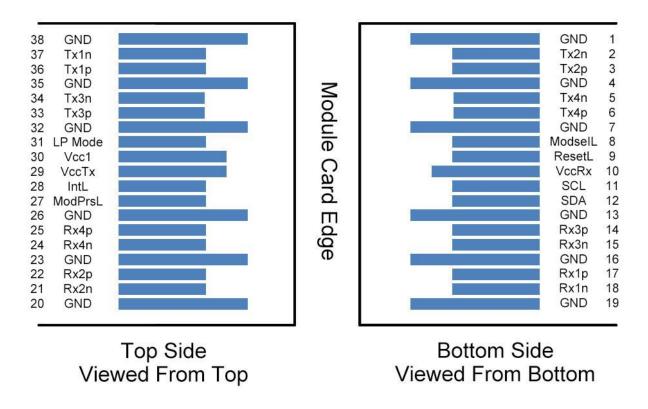
Rev.00C3.30_20240110

Receiver Electro-optical Characteristics

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C


Parame	Symbol	Min.	Тур.	Max.	Unit	Note	
Operating Data Rate	DR		103.125	106.25	Gb/s		
Optical Center Wavele	ngth	λc	1308.61	1309.14	1309.66	nm	
Damage Threshold		D тн	-2.4			dBm	1
Average Receive Powe	er	Prx-avg	-16.2		-3.4	dBm	
Receiver Power (OMA))	Prx-ома			-2.6	dBm	
Receiver Sensitivity	TDECQ < 1.4dB	OEN			-14	dBm	_
(OMA)	TDECQ > 1.4dB.	SENoma			TECQ-15.4		2
Stressed Receiver Ser	sitivity (OMA)	SRSOMA			-11.5	dBm	
Receiver Reflectance		R _{RX}			-26	dB	
LOS De-Assert		LOSD			-16	dBm	
LOS Assert		LOSA	-26		-18	dBm	
LOS Hysteresis		LOSHY	0.5			dB	
Output Differential Impedance		Zout	90	100	110	Ω	
Differential Data Output Voltage		Vout-pp			900	mVpp	
Common Mode Voltage	TP4	-350		2850	mV		

Note1: The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.


Note2: Sensitivity is specified at 2.4x10⁻⁴ BER with PRBS31Q.

Rev.00C3.30_20240110

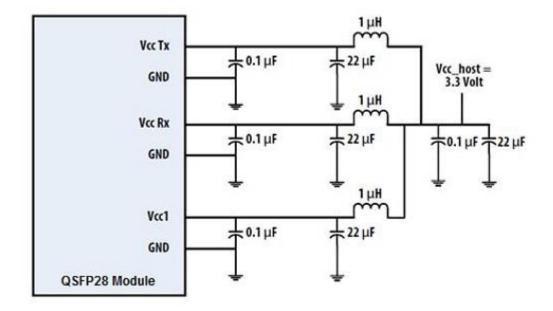
Transceiver Block Diagram

Pin Assignment

Rev.00C3.30_20240110

Pin Description

Pin	Logic	Name	Function / Description				
1		GND	Module Ground				
2	CML-I	Tx2n	Transmitter Inverted Data Input				
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input				
4		GND	Module Ground				
5	CML-I	Tx4n	Transmitter Inverted Data Input				
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input				
7		GND	Module Ground				
8	LVTLL-I	ModSelL	Module Select				
9	LVTLL-I	ResetL	Module Reset				
10		VccRx	+3.3V Power Supply Receiver				
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock				
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data				
13		GND	Module Ground				
14	CML-O	Rx3p	Receiver Non-Inverted Data Output				
15	CML-O	Rx3n	Receiver Inverted Data Output				
16		GND	Module Ground				
17	CML-O	Rx1p	Receiver Non-Inverted Data Output				
18	CML-O	Rx1n	Receiver Inverted Data Output				
19		GND	Module Ground				
20		GND	Module Ground				
21	CML-O	Rx2n	Receiver Inverted Data Output				
22	CML-O	Rx2p	Receiver Non-Inverted Data Output				
23		GND	Module Ground				
24	CML-O	Rx4n	Receiver Inverted Data Output				
25	CML-O	Rx4p	Receiver Non-Inverted Data Output				
26		GND	Module Ground				
27	LVTLL-O	ModPrsL	Module Present				
28	LVTLL-O	IntL	Interrupt				
29		VccTx	+3.3V Power Supply Transmitter				
30		Vcc1	+3.3V Power Supply				
31	LVTLL-I	LPMode	Low Power Mode				
32		GND	Module Ground				


Rev.00C3.30_20240110

33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Module Ground

Note1: GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Power Supply Filter

TEL+886-2-2898-3830

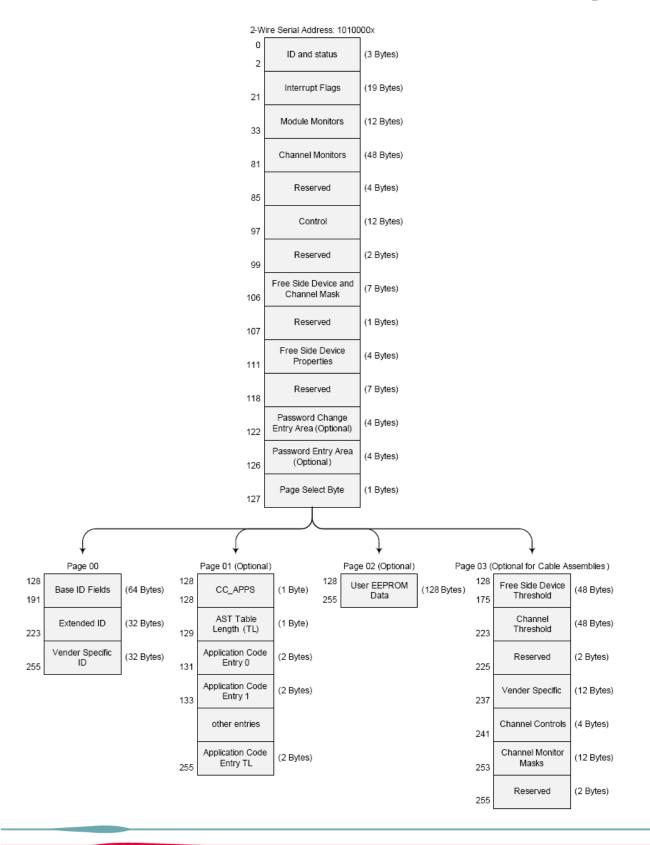
Rev.00C3.30_20240110

Digital Diagnostic Functions

As defined by the QSFP28 MSA, Ficer's QSFP28 transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

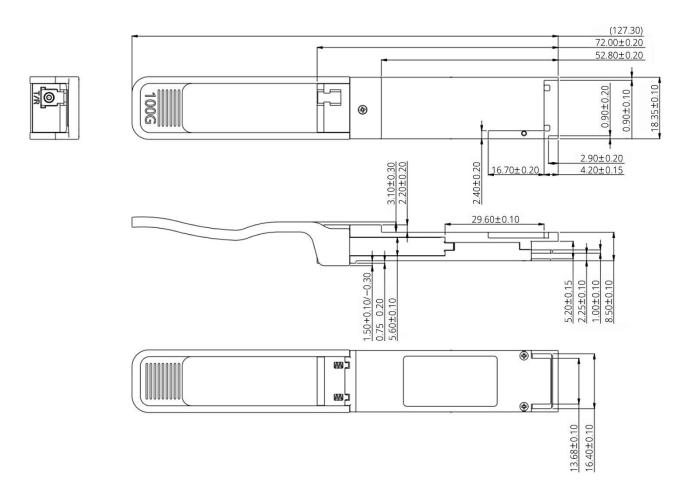
It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.


The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP28 transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP28 transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the QSFP28 MSA Specification.

Digital Diagnostic Memory Map

Sales@Ficer.com


Rev.00C3.30_20240110

9

Rev.00C3.30_20240110

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

Part No.	Tx	Rx	Link	DDM	Temp.
FQ2S-K8- L04-40D (Blue Pull Tab)	1304nm	1309nm	SMF 40km (with FEC)	Yes	0~70°C

Note1: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.